
Teamwork Makes the Defense Work:
Defense Resource Allocation with Composable Targets

Siyu Liu

Arizona State University

Tempe, United States

sliu274@asu.edu

Rida Bazzi

Arizona State University

Tempe, United States

bazzi@asu.edu

Fei Fang

Carnegie Mellon University

Pittsburgh, United States

feifang@cmu.edu

Tiffany Bao

Arizona State University

Tempe, United States

tbao@asu.edu

ABSTRACT
Despite the success of game-theoretic models in security resource

allocations against adversaries, existing works have fallen short in

addressing the critical challenge of team defense with composable

targets. Composable targets, commonly seen in cybersecurity prac-

tices like vulnerability analysis, consist of heterogeneous tasks that

can be processed by different defenders. The intrinsic heterogeneity

and potential precedence constraints among tasks present a great

challenge to devising optimal defender strategies.

In this paper, we propose a general-sum Stackelberg game model

for team defense with composable targets. We develop SWING, a

novel method that efficiently calculates optimal defense strategies

by combining binary search, linear programming, and column gen-

eration. We prove that our algorithm calculates strong Stackelberg

equilibrium (SSE), and that in practice, it is runtime-efficient at

finding optimal strategies. To further enhance the applicability of

SWING, we extend its capabilities to encompass defense tasks with

precedence constraints. This is achieved by leveraging flexible job

shop problem (FJSP) literature to devise a branch-and-bound-based

method. Our empirical evaluations illustrate that this extension

enhances runtime efficiency and substantially improves solution

quality compared to baseline methods.

KEYWORDS
Stackelberg Security Game; Resource Allocation

ACM Reference Format:
Siyu Liu, Rida Bazzi, Fei Fang, and Tiffany Bao. 2025. Teamwork Makes

the Defense Work: Defense Resource Allocation with Composable Targets.

In Proc. of the 24th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Since its introduction in 2006, the Stackelberg Security Game (SSG)

model [6] has been highly influential in security research and has

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

been widely applied to real-world scenarios, including infrastruc-

ture protection [17], environmental crime prevention [7, 8, 10], and

cybersecurity [23]. In these applications, defenders protect assets

such as airport gates [17] or other specific locations at designated

times [8].

While the SSG model has proven effective for many real-world

challenges, the growing complexity of modern scenarios demands

more sophisticated approaches to protect the targets. One promi-

nent example is cybersecurity; as computing techniques become

more complex and the scale of analysis grows, defending cyber

targets has evolved into a highly intricate process composed of mul-

tiple tasks. For instance, in the CAG model [23], detecting an attack

used to involve an analyst successfully interpreting a single cyber

alert. However, modern cyberattacks have grown so sophisticated

that detecting an attack now requires analyzing a series of alerts by

a team of tier-1 analysts, synthesizing the information, and having

higher-tier analysts assess whether an attack is present. As a result,

targets have become composable, as they consist of multiple interde-

pendent tasks. Furthermore, these tasks have precedence constraints,
so completing these tasks must follow a specific order. A target

remains unprotected unless all associated tasks are completed, with

each analyst finishing their part within their resource constraints.

The composable targets property introduces significant complex-

ity to the Stackelberg Security Game (SSG) model, making existing

approaches inadequate. Solving these problems with composable

targets remains NP-hard, and the solution space is substantially

larger than in previous models. While cybersecurity games are

known for their vast strategy space [24], the introduction of com-

posable targets has caused the strategy space to increase exponen-

tially in the number of targets and analysts. For example, given

the CAG model’s solution space as𝑀 (which is already exponen-

tial to the number of resources and targets), our solution space is

𝑂
(
𝑀𝑡 ·𝑚𝑝!

)
where 𝑡 is the number of tasks for each target,𝑚 is

the number of agents (i.e., resources in a generic SSG model), and

𝑝 is the number of tasks assigned to each agent.

Moreover, a composable target complicates the marginal strategy

feasibility problem and makes prior solutions not applicable. The

bihierarchy [4] structure of the constraints does not hold in our

problem. Other solutions, such as Blade [32], solve the marginal

strategy feasibility problem by converting the problem to an LP and

seeking a solution through relaxation. If no solution is found, they

add a linear constraint to the equations to further restrict the search

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

space. However, the feasibility problem in our domain is a MILP

rather than LP. As a result, no linear constraint is generated when

no feasible solution is found, and the search space remains. Fur-

thermore, because of the infeasible compact-form strategy, existing

algorithms that leverage the monotonic structure in compact-form

strategies, such as ORIGAMI, cannot be directly applied to our

problem. The polyhedron structure of ORIGAMI ensures that any

feasible compact form strategy has a corresponding feasible mixed

normal form strategy. This structure does not exist in our problem.

This paper presents a novel approach, SWING (Stackelberg equi-

librium With Implementable Normal-form stateGy), to addressing

the composable target team defense problem. Our key insight is that

the composable target team defense problem exhibits a monotonic
infeasibility property (Theorem 4.4). Specifically, if no feasible de-

fender’s compact-form strategy exists at a given attacker’s utility

value, no feasible strategy will exist for any lower attacker utility.

This property makes us leverage the binary search on compact-form

strategy space to decide optimal compact-form strategies efficiently.

To convert the compact-form strategy into a normal-form strat-

egy, we propose a column generation-based method, which for-

mulates two distinct Mixed-Integer Linear Programming (MILP)

problems. Each MILP identifies optimal columns for scenarios with

and without precedence constraints. We further enhance algorithm

efficiency for scenarios with precedence constraints using a branch-

and-bound method combined with a preprocessing technique.

In our evaluation, we assess the performance of SWING for the

composable target team defense problem both with and without

precedence constraints. The results demonstrate that, compared to

industry-level commercial genericMILP solvers Gurobi, SWING not

only yields strategies with higher defender utility but also speeds

up the solving process by a factor of two. The improvements in

defender utility and time performance become more pronounced

as the number of targets increases.

SWING has a significant impact on real-world cybersecurity

practices. We applied it to a Fortune 500 technology company T
1

to allocate weekly high-risk vulnerability mitigation tasks to 38

analysts (See Section 6.3). SWING increased the average detection

rate of high-risk vulnerabilities from 10% to 90.91%. Given that

the impact of high-risk vulnerabilities can range from millions to

billions of dollars in damages, increasing the mitigation rate for

such vulnerabilities could save the company hundreds of thousands

of dollars every week. Our analysis also revealed that improving

the efficiency of existing employees is more cost-effective than

increasing the workforce.

This paper makes four contributions: 1). We present the compos-

able target team defense problem and develop a novel general-sum

Stackelberg game model for the problem. 2) We introduce the mono-

tonic infeasibility property, demonstrate that models with such a

property can be solved with a binary search over compact-form

strategies even though the strategies can be infeasible, and prove

that our problem has this property. 3). We develop SWING, a novel

solution for the compact-form strategy feasibility problem, and 4)

3). We demonstrate that SWING significantly enhances efficiency

and solution quality compared to baseline methods and can be used

1
For privacy reasons, we cannot disclose the company’s name; we will refer to the

company as T throughout this paper.

in real-world scenarios. The code implementation of SWING is

available at https://github.com/sefcom/SWING.

2 MOTIVATION AND RELATEDWORK
Motivating Domain. Composable target team defense has be-

come increasingly prevalent in cybersecurity. As networks and

software systems expand, defending targets becomes more com-

plex, requiring defenders to break down per-target defense into

manageable tasks, typically handled by teams such as Security

Operations Centers (SOCs) or security response teams [28]. This

defense structure reflects the inherently asymmetrical nature of

cybersecurity, where defenders must identify and remediate all

potential vulnerabilities. At the same time, an attacker needs only

to exploit a single one to launch a successful attack.

One composable target team defense example is vulnerability

mitigation in large IT companies, such as Microsoft’s Security Re-

sponse Center [18] andGoogle’s Vulnerability Reward Program [12].

These programs highlight the critical role of cybersecurity response

teams in securing the company products by mitigating vulnerabili-

ties.

We will use a Fortune 500 technique company T as a concrete

example of vulnerability mitigation in IT companies. The process of

mitigating vulnerabilities is a collaborative effort involving multiple

steps, as illustrated in Figure 1. This process typically begins with

the submission of a bug report, which can originate from internal

code auditing or external sources such as bug bounty programs.

Upon receiving the report, a security analyst investigates the issue

and attributes the vulnerability to a specific component of the

product. The analyst then collaborates with the relevant developer,

guiding them through the patch development process. Once the

patch is created, the security response team rigorously tests it to

ensure its effectiveness. Finally, the patched product is sent to the

appropriate department and released to the public.

Each task in this workflow must be completed in order before

the vulnerability is fully mitigated. In the meantime, every unre-

solved vulnerability presents an opportunity for attackers to exploit,

potentially causing catastrophic damage to users, such as service

outages, data breaches, or even unauthorized control of systems.

Given the limited number of security personnel and their limited

working hours, many of the received bug reports remain unpro-

cessed. Therefore, it is crucial to optimize the task assignment to

ensure the best possible security outcomes, especially for high-risk

vulnerabilities.

Related Work. Stackelberg Security Games (SSGs) have been suc-

cessfully applied to real-world optimal resource allocation scenar-

ios [9, 17, 20–22, 25, 26, 30], yet little has addressed team defense

with composable targets. One of the closest existing works is the

Cyber-alert Allocation Game (CAG) [23], which aims to optimize

the assignment of cyber alerts to cyber analysts, analogous to our

goal of assigning tasks to defense agents. However, their model

does not support composable targets or precedence constraints

among tasks. Therefore, the implementability issues inherited from

our model differ from the CAG model. The existing model’s solu-

tion cannot be sufficiently applied to the composable target team

defense problem.

https://github.com/sefcom/SWING

Triage Release Patched ProductDevelop Patch Test PatchVulnerability Report

Figure 1: Vulnerability mitigation workflow in Company T.

3 MODEL FORMULATION
Wemodel the composable target team defense problem as a general-

sum two-player Stackelberg Security Game (SSG), where the de-

fender (leader) first commits to defend a set of targets, and the

attacker (follower) then selects one target to attack. We focus on

one-target attacks, similar to prior works [1, 15, 23], because many

real-world attacks, especially cyberattacks, are one-target [19].

Each target has four associated utilities. For target 𝑖 , if the at-

tacker attacks it and the defender covers (uncovers) it, then the

attacker gets a utility of 𝑈
𝑐,𝑖
𝑎 (𝑈

𝑢,𝑖
𝑎) while the defender receives a

utility𝑈
𝑐,𝑖

𝑑
(𝑈

𝑢,𝑖

𝑑
). We assume that𝑈

𝑐,𝑖

𝑑
> 𝑈

𝑢,𝑖

𝑑
and𝑈

𝑐,𝑖
𝑎 < 𝑈

𝑢,𝑖
𝑎 , i.e., a

defended target is beneficial to the defender yet undesirable to the

attacker. We also assume both players are rational, similar to exist-

ing resource allocation in adversarial environment research [3, 23].

Let 𝑛 denote the number of targets. We present the attacker’s

(mixed) strategy as a vector 𝒈 ∈ {0, 1}𝑛 with

∑𝑛
𝑖=1 𝒈𝑖 = 1, where 𝒈𝑖

is the 𝑖th entry of 𝒈. We then present the defender’s strategy in a

compact form2
[11, 17, 31] as 𝒑 = [0, 1]𝑛 where 𝒑𝑖 is the probability

that target 𝑖 is covered. Given the players’ strategy, their expected

payoffs can be formed as follows:

Defender: 𝑅𝑑 (𝒑,𝒈) =
∑𝑛

𝑖=1𝒈𝑖 (𝒑𝑖𝑈
𝑐,𝑖

𝑑
+ (1 − 𝒑𝑖)𝑈𝑢,𝑖

𝑑
) (1)

Attacker: 𝑅𝑎 (𝒑,𝒈) =
∑𝑛

𝑖=1𝒈𝑖 (𝒑𝑖𝑈 𝑐,𝑖
𝑎 + (1 − 𝒑𝑖)𝑈𝑢,𝑖

𝑎) (2)

Regarding defender’s normal form strategy, we first define a pure

normal form strategy as a binary vector 𝒂 = {0, 1}𝑛 , with 𝒂𝑖 = 1

iff target 𝑖 is covered. Let A be the set of pure strategies, and |A|
be the size of the set. The mixed normal form strategy 𝒙 is a |A|-
vector. Let𝐴 be an 𝑛 × |A| binary matrix denoting if a column pure

strategy covers a row target. Therefore we have

𝒑 = 𝐴𝒙 (3)

meaning that 𝒑𝑖 is computed by summing up all the probabilities of

the pure strategies with target 𝑖 covered. In our game setting, cov-

ering a composable target entails completing a series of tasks [28]
through collaborations within a team of defense agents (agents for
short). We call a target 𝑖 has a task set denoted as T𝑖 , and the set of

all tasks is T = ∪𝑛𝑖=1T𝑖 . Suppose the defense team has𝑚 agents. To

model the resource budget, we define the following notations:

𝐶: Cost matrix, an𝑚×|T |matrix with each entry𝐶𝑖, 𝑗 representing

the cost for an agent 𝑖 to complete a task 𝑡 𝑗 .

𝒃 : Budget constraint, an𝑚-dimensional vector 𝒃 where 𝒃𝑖 is time

budget for agent 𝑖 .

𝑆 : Assignment matrix, an𝑚 × |T | binary matrix representing the

task assignment to each agent. 𝑆𝑖, 𝑗 = 1 iff task 𝑡 𝑗 is assigned to

agent 𝑖 .

We define an action 𝒂 is feasible if an assignment matrix 𝑆 exists that

1) it assigns all tasks to agents (

∑𝑚
𝑖=1 𝑆𝑖, 𝑗 = 1,∀𝑡 𝑗 ∈ ∪{𝑘 |𝒂𝑘=1}T𝑘),

and 2) every agent’s cost is within the budget constraint (𝑆𝐶𝑇 ≤ 𝒃).
A strategy is feasible iff all associated actions are feasible. We use

ˆA to denote the set of all the feasible defender actions.

2
Previous work also names it marginal form or marginal strategy

Vulnerability 1 t11 t12

Compact
Strategy p

���

���

���

�

�

�

��

�

t11 t12t21t31

�������
�������

�
�

�
�

�
� �

�

��� ���

Mixed Normal
form Strategy x

Task Allocation Matrix S

Task Set T

t21

t31

t11 t12t21t31

�������
�������

�
�

�
�

�
� �

�

t11 t12t21t31

�������
�������

�
�

�
�

�
� �

�

Cost Matrix C

T1

T2

T3

�
�

Budget b

Utilities

U1

U2

U3

Vulnerability 2

Vulnerability 3

Figure 2: Problem example.
Each vulnerability is composed of different tasks with different

precedence constraints. A vulnerability is successfully defended if

all tasks are finished; otherwise, the target is not defended. In the

meantime, each defense agent has a hard-limit budget and a cost

for different types of tasks. The goal is to compute the defender’s

optimal and feasible normal-form strategies. Specifically, given 𝑛

composable targets,𝑚 defense agents with their utility matrixU,

task set T , cost matrix𝐶 , and budget constraint 𝒃 , we will compute

the defender’s optimal and feasible normal form strategy 𝒙 , as well
as the corresponding feasible assignment matrix 𝑆 .

Example. Figure 2 demonstrates an example the composable

target team defense problem. {𝑡1,1, 𝑡1,2}, {𝑡2,1} and {𝑡3,1} are the task
sets that belong to vulnerability 1, 2 and 3. There are two agents

available, and because there are four tasks in total, the defender has

a 2× 4 cost matrix𝐶 with each entry representing the time for each

agent to complete each task. Suppose [0.2, 0.4, 0.6]𝑇 is the compact

strategy denoting the probability of defending each vulnerability.

The mixed normal form strategy is that the defender has probability

0.4 to apply the pure strategy of defending vulnerability 2 and 3

and 0.2 to defend 1 and 3, since [0.2, 0.4, 0.6]𝑇 = 0.4 · [0, 1, 1]𝑇 +0.2 ·
[1, 0, 1]𝑇 . Defending vulnerabilities 2 and 3 requires completing all

the tasks in these two vulnerabilities. Thus, we have a task allocation

solution 𝑆 for each pure strategy with positive probability in the

mixed normal form strategy. For the pure strategy [0, 1, 1]𝑇 , the
task allocation is to allocation task 𝑡2,1 to agent 2 and task 𝑡3,1 to

agent 1.

4 DEFENDER’S OPTIMAL STRATEGY
Composable target team defense brings unique challenges in com-

puting optimal defender strategies under a large normal-form strat-

egy space. The solution to our problem comprises two parts: comput-

ing the optimal compact form strategy and ensuring the computed

optimal compact strategy is feasible.

We will compute the strong Stackelberg equilibrium (SSE) for

optimal strategies because our model shares the commonality [17]

that the attacker would choose strategy optimally for the defender

when these strategies lead to the same maximum attacker payoffs.

Let 𝜙 and 𝜓 be the defender’s and attacker’s payoffs, and 𝑀 be

a huge value. We formulate the composable target team defense

problem as a MILP (P0) as follows:

max 𝜙 (4)

𝒈𝑖 ∈ {0, 1} 1 ≤ 𝑖 ≤ 𝑛 (5)∑𝑛
𝑖=1𝒈𝑖 = 1 (6)∑

𝒂∈ ˆA𝒂𝑖𝒙𝑖 = 𝒑𝑖 1 ≤ 𝑖 ≤ 𝑛 (7)

𝒙𝑖 ∈ [0, 1] 1 ≤ 𝑖 ≤ | ˆA| (8)∑| ˆA|
𝑖=1

𝒙𝑖 ≤1 (9)

𝜙 − (𝒑𝑖𝑈 𝑐,𝑖

𝑑
+ (1 − 𝒑𝑖)𝑈𝑢,𝑖

𝑑
) ≤ (1 − 𝒈𝑖) ·𝑀 1 ≤ 𝑖 ≤ 𝑛 (10)

0 ≤ 𝜓 − (𝒑𝑖𝑈 𝑐,𝑖
𝑎 + (1 − 𝒑𝑖)𝑈𝑢,𝑖

𝑎) ≤ (1 − 𝒈𝑖) ·𝑀 1 ≤ 𝑖 ≤ 𝑛 (11)

ˆA in equation 9 is the set of all feasible defender’s pure strategies.

Equations 5, 6, and 11 ensure that the attacker selects a single target

and gains the highest payoff, and Equation 10 ensures the defender

gains the highest payoff. Determining the feasible pure strategy

set is hard because for any pure strategy 𝒂, solving integer pro-

gramming is required to check whether a task assignment is within

budget limits. And from all the feasible compact strategies, we need

to find the optimal one that maximizes the defender’s payoff. To

achieve this, we propose to use binary search to find the optimal

defender’s payoff iteratively. We make the key observation that

the attacker’s payoff𝜓 is continuous and monotonically decreasing

as the defender increases coverage in the compact form strategy.

If the compact form strategy is an SSE, the defender’s payoff will

monotonically increase as the coverage increases. Using the SSE

compact form strategy as the bridge, we can find that the defender’s

payoff monotonically increases as the attacker’s payoff decreases.

This property makes the binary search possible to find the optimal

defender’s payoff. Instead of doing a binary search on the defender’s

payoff like previous work [33], we do a binary search on the at-

tacker’s payoff because our defender’s payoff is not continuous. As

the key challenge of the algorithm is runtime efficiency and the

performance bottleneck is the compact-to-normal form conversion,

we need to reduce the number of enumerations to decrease the

number of conversions by doing the binary search. The follow-

ing paragraphs will provide a formal definition and proof of this

property.

To achieve this goal, we first define the comparison of two

compact-form strategies 𝒑 and 𝒑′
, 𝒑 ≥ 𝒑′

iff 𝒑 𝒊 ≥ 𝒑′
𝒊 ∀𝑖 , meaning

that the coverage of any target 𝑖 in 𝒑 is greater or equal to that in

𝒑′
. Based on the definition, we have the following propositions:

Proposition 4.1. The defender’s SSE compact-form strategy 𝒑
monotonically decreases as the attacker’s payoff𝜓 increases.

Proof. Existingwork [17] has shown that the SSE compact-form

strategy of a given𝜓 , denoted as 𝑓 (𝜓), can be computed by:

𝒑𝑖 = (𝜓−𝑈
𝑢,𝑖
𝑎)/(𝑈 𝑐,𝑖

𝑎 −𝑈𝑢,𝑖
𝑎) if𝜓 < 𝑈𝑢,𝑖

𝑎 (12)

𝒑 𝒊 = 0 otherwise (13)

Because 𝜓 −𝑈𝑢,𝑖
𝑎 < 0, 𝒑𝑖 decreases as 𝜓 increases. Therefore, the

defender’s SSE compact-form strategy 𝒑 monotonically decreases

as the attacker’s payoff𝜓 increases. □

This proposition yields the theorem below:

Algorithm 1: The SWING Algorithm Framework

1: Input: target set [𝑛], utility matrix for every target, agent set [𝑚],
time cost matrix𝐶 and budget constraint vector 𝒃 .

2: Output: A normal form feasible and optimal strategy 𝒙 .
3: Initialization: 𝑙𝑒 𝑓 𝑡 ← max𝑖 𝑈

𝑐,𝑖
𝑎 , 𝑟𝑖𝑔ℎ𝑡 ← max𝑖 𝑈

𝑢,𝑖
𝑎 .

4: while 𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒 𝑓 𝑡 ≥ 𝜃 do
5: 𝜓 ← 𝑙𝑒 𝑓 𝑡+𝑟𝑖𝑔ℎ𝑡

2
.

6: Compute the compact form defender’s SSE strategy 𝒑 := 𝑓 (𝜓)
7: Solve program (P2) and let 𝒙∗ be the solution.
8: if 1𝑇 𝒙∗ ≤ 1 then
9: 𝑙𝑒 𝑓 𝑡 ← 𝜓 .

10: else
11: 𝑟𝑖𝑔ℎ𝑡 ← 𝜓 .

12: end if
13: end while
14: return 𝒑 and 𝒙∗

Theorem 4.2. The attacker’s payoff𝜓 decreases monotonically as
the defender’s payoff 𝜙 increases.

Proof. Let 𝒑 := 𝑓 (𝜓). Proposition 4.1 tells us 𝜓 decreases, 𝒑
increases. Let 𝒈 be the attacker’s strategy best response to 𝒑 that

aligns with the definition of SSE. Then when 𝒑 increases, defender’s

payoff 𝑅𝑑 (𝒑,𝒈) increases. □

A normal form strategy 𝒙 that corresponds to 𝒑 is feasible if it

satisfies Equations 7 and 9. Let 𝐴 be an 𝑛 × | ˆA| binary matrix with

each column a feasible pure strategy 𝒂 ∈ ˆA. Finding 𝒙 satisfying

𝐴𝒙 = 𝒑 is essentially the same as solving the following linear

program (P1):

min 1𝑇 𝒙 𝑠 .𝑡 . 𝐴𝒙 = 𝒑, 𝒙 ≥ 0, (P1)

A feasible normal form strategy exists iff min 1𝑇 𝒙 ≤ 1. Next, we re-

lax the constraints in program (P1) and yield an inequality-constrained

program (P1) with the change of 𝐴𝒙 = 𝒑:
min 1𝑇 𝒙 𝑠 .𝑡 . 𝐴𝒙 ≥ 𝒑, 𝒙 ≥ 0 (P2)

The solution for (P2) is at least as good as the one for (P1). Also, we

have the following lemma:

Proposition 4.3. Given 𝒑, let 𝒙∗ be the optimal solution of (P2)
and 𝛿 := 1𝑇 𝒙∗. There exists a polynomial time computable function
that can map 𝒙∗ to 𝒙′∗ where 𝐴𝒙′∗ = 𝒑 and 1𝑇 𝒙′∗ = 𝛿 . (Proof in
appendix)

This proposition tells us that solving (P2) is equivalent to solving

(P1). With Propositions 4.1 and 4.3, we have the following theorem:

Theorem 4.4. For any attacker’s payoff 𝜓 , if 𝜓 does not have
a corresponding feasible normal-form strategy, then any attacker’s
payoffs less than𝜓 will not have a feasible normal-form strategy.

Proof. Let 𝒑 = 𝑓 (𝜓), according to Proposition 1, if 𝜓 > 𝜓 ′,
𝑓 (𝜓) < 𝑓 (𝜓 ′). In other words, 𝒑 < 𝒑′

. If we solve program (P2)

for both 𝒑 and 𝒑′ and let 𝒙∗ and 𝒙′∗
as their optimal solutions

respectively. Obviously, 1𝑇 𝒙∗ < 1𝑇 𝒙′∗
since all entries of 𝐴 and 𝒙

are non-negative. If 1𝑇 𝒙 ≤ 1, the normal form strategy is feasible;

and if 1𝑇 𝒙 > 1, it is infeasible. Since 1𝑇 𝒙∗ < 1𝑇 𝒙′∗
, if 𝒙∗ is infeasible,

then 𝒙′∗
is infeasible. Conversely, if 𝒙′∗

if feasible, then 𝒙∗ is feasible.
□

These two theorems prove the lowest attacker’s payoffwith a fea-

sible normal-form strategywill yield the defender’s optimal strategy

and that we can solve the model by binary search where we search

the value of the attacker’s payoff and compute the corresponding

defender’s strategy and payoff. Furthermore, the searching value

only needs to range betweenmax𝑖 𝑈
𝑐,𝑖
𝑎 andmax𝑖 𝑈

𝑢,𝑖
𝑎 (themaximum

attacker utilities over targets, with and without defense) because

even though the defender covers all the targets, the attacker can

still select the target with the highest attack utility under defense.

As shown in Algorithm 1, in every iteration, we select the average

value of the current searching range (Line 5) and check if the at-

tacker’s payoff has a corresponding normal-form strategy (Line 6

- Line 8). If so, we continue the search to the left half of the value

range, otherwise we go for the right half. The algorithm terminates

when the search range is marginally small.

5 NORMAL-FORM STRATEGY
In this section, we focus on Algorithm 1’s Line 7 of converting

compact form strategy to normal form strategies considering two

scenarios: without and with schedule constraints.

5.1 Conversion without Schedule Constraints
We use column generation for the solution since the number of

matrix 𝐴 columns (𝑂 (2𝑛)) is exponentially larger than the number

of rows (𝑛). Column generation starts with a small initialized sub-

set of columns and iteratively adds the next optimal and feasible

column 𝒂∗ that can help reduce the objective function of (P2). Let

𝒚 be the dual variables of (P2). Finding the next optimal column is

essentially to solve the following subproblem (P3):

max

∑𝑛
𝑘=1

𝒚𝑘𝒂𝑘 (14)∑𝑚
𝑖=1𝑆𝑖,𝑗 ≥𝒂{𝑘 |𝑡 𝑗 ∈T𝑘 } 1 ≤ 𝑘 ≤ 𝑛, ∀𝑡 𝑗 ∈ T (15)∑𝑚
𝑖=1𝑆𝑖,𝑗 ≤1 ∀𝑡 𝑗 ∈ T (16)∑

𝑡 𝑗 ∈T𝑆𝑖,𝑗 · 𝐶𝑖,𝑗 ≤𝒃𝑖 1 ≤ 𝑖 ≤ 𝑚 (17)

Note that 𝑆𝑖, 𝑗 , 𝒂𝑘 ∈ {0, 1}∀𝑖, 𝑗, 𝑘 . Equation 15 and 16 is to show that

if target 𝑘 is covered then all the tasks 𝑡 𝑗 that belong to task set T𝑘
must be assigned to one and only one agent. And equation 17 is the

feasibility check that the assignment matrix 𝑆 cannot exceed the

budgets. Then we have Algorithm 2, a column generation method

to solve (P2).

Algorithm 2: Conversion without Schedule Constraints

1: Input : Marginal form strategy 𝒑, matrix 𝐴.

2: Output : The 𝒙∗ of (P2) and the corresponding task assignment

matrix 𝑆 .

3: Initialization : let 𝐴 be an 𝑛 × 𝑛 identity matrix.

4: while True do
5: Let 𝒚 be the dual variables of program (P2).

6: Let 𝒂∗ be the optimal solution of program (P3) .

7: if 𝒂∗ in 𝐴 or 𝒂∗ is dominated by any column in 𝐴 then
8: break.
9: end if
10: 𝐴← [𝐴 𝒂∗].
11: end while
12: 𝒙∗ ← the solution of P2 with the current 𝐴.

13: Return 𝒙∗.

5.2 Conversion with Schedule Constraints
When incorporating task ordering constraints within each target,

column generation remains a viable approach to solving the pro-

gram (P2). However, instead of using (P3) to generate a new column,

we need a new program (P4) due to distinct feasibility requirements

stemming from schedule constraints. In this formulation, let 𝑡𝑖 𝑗 be

the 𝑗th task in T𝑖 and 𝑐𝑖 𝑗𝑘 be the processing time of 𝑡𝑖 𝑗 for agent

𝑘 . And 𝒃𝑘 is the time budget agent 𝑘 possesses. We define 𝑠𝑖 𝑗𝑘 as

the starting time of task 𝑡𝑖 𝑗 for agent 𝑘 . 𝑣𝑖 𝑗𝑘 serves as an indicator

for whether 𝑡𝑖 𝑗 is processed by agent 𝑘 . 𝑣𝑖 𝑗𝑘 is set to 1 if it is; and 0

otherwise. Introducing 𝑧𝑖 𝑗ℎ𝑔𝑘 to capture schedule of task 𝑡𝑖 𝑗 and 𝑡ℎ𝑔
on agent 𝑘 , 𝑧𝑖 𝑗ℎ𝑔𝑘 = 0 if 𝑡𝑖 𝑗 is processed before 𝑡ℎ𝑔 on agent 𝑘 and

𝑧𝑖 𝑗ℎ𝑔𝑘 = 1 otherwise. We formulate (P4) as follows:

max

∑𝑛
𝑖=1𝒚𝑖𝒂𝑖 (18)

𝑠𝑖 𝑗𝑘 ≤ 𝑣𝑖 𝑗𝑘 ·𝑀 ∀𝑖, 𝑗 (19)

𝑠𝑖 𝑗𝑘 ≥ 𝑠ℎ𝑔𝑘 + 𝑐ℎ𝑔𝑘 − (3 − 𝑧𝑖 𝑗ℎ𝑔𝑘 − 𝑣𝑖 𝑗𝑘 − 𝑣ℎ𝑔𝑘) ·𝑀∀𝑖 < ℎ, ∀ 𝑗, 𝑔, 𝑘
(20)

𝑠ℎ𝑔𝑘 ≥ 𝑠𝑖 𝑗𝑘 + 𝑐𝑖 𝑗𝑘 − (𝑧𝑖 𝑗ℎ𝑔𝑘 + 2 − 𝑣𝑖 𝑗𝑘 − 𝑣ℎ𝑔𝑘) ·𝑀∀𝑖 < ℎ, ∀ 𝑗, 𝑔, 𝑘
(21)∑

𝑘𝑠𝑖 𝑗𝑘 ≥
∑

𝑘𝑠𝑖 𝑗−1𝑘 +
∑

𝑘 𝑣𝑖 𝑗−1𝑘𝑐𝑖 𝑗−1𝑘 ·𝑀 (22)∑
𝑘 𝑣𝑖 𝑗𝑘 ≤

∑
𝑘 𝑣𝑖 𝑗−1𝑘 ∀𝑖, 𝑗 (23)∑

𝑘 𝑣𝑖 𝑗𝑘 ≥ 𝒂𝑖 ∀𝑖, 𝑗 (24)∑
𝑘 𝑣𝑖 𝑗𝑘 ≤ 1 ∀𝑖, 𝑗 (25)

𝑠𝑖 𝑗𝑘 ≥ 0 ∀𝑖, 𝑗, 𝑘 (26)

𝑠𝑖 𝑗𝑘 + 𝑣𝑖 𝑗𝑘 · 𝑐𝑖 𝑗𝑘 ≤ 𝑏𝑘 ∀𝑖, 𝑗, 𝑘 (27)

𝑣𝑖 𝑗𝑘 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 (28)

𝒂𝑖 ∈ {0, 1} ∀𝑖 (29)

If task 𝑡𝑖 𝑗 is not assigned to agent 𝑘 , constraint 19 sets the start-

ing time of 𝑡𝑖 𝑗 for agent 𝑘 to 0. Constraints 20 and 21 ensure that

an agent can only process one task at a time. And two tasks 𝑡𝑖 𝑗
and 𝑡ℎ𝑔 can only be sequenced when both 𝑣𝑖 𝑗𝑘 and 𝑣ℎ𝑔𝑘 both take 1;

otherwise, they bear no relationship with one another on agent 𝑘 .

Constraint 22 guarantees that each task is performed in a specified

order. Constraint 23 requires task 𝑡𝑖 𝑗 must follow the completion of

𝑡𝑖 𝑗−1. Constraints 24 and 25 mirror Constraints15 and 16, respec-

tively.

In Line 6 of Algorithm 2, replacing (P3) with (P4) transforms

Algorithm 2 into a methodology addressing (P2) while accounting

for task schedule constraints.

Solving program (P4). Directly solving (P4) is time-consuming

due to the large number of variables inherent in the formulation.

We create a branch and bound-based algorithm that approximates

the solution for (P4). Solving (P4) entails two steps: a) identifying all

feasible pure strategies 𝒂, and b) finding the pure strategy with the

optimal reward

∑𝑛
𝑖=1𝒚𝑖𝒂𝑖 from feasible strategy set. The assessment

of feasibility for any given pure strategy 𝒂 can be reduced to the

Flexible Job shop Scheduling Problem (FJSP) [2], where one has

multiple jobs, each of which requires to complete a set of operations

in a specific order. Each operation can be processed by a set of

machines with varying processing power. There is a rich existing

literature of algorithms proposed to solve FJSP [5, 16, 34], and these

Algorithm 3: Sovling (P4) with branch and bound

1: Input: The dual variables of (P1) 𝒚 , task set and their schedule and time cost

𝑐𝑖 𝑗𝑘∀𝑖, 𝑗, 𝑘
2: Output: The optimal feasible pure strategy 𝒂 that has the maximum reward.

3: nodelist← {𝑅𝑜𝑜𝑡 }, 𝑣∗ ← 0.

4: while nodelist is not empty do
5: Remove from nodelist the node with the best reward upper bound

6: Let an undetermined variable 𝒂𝑖 ← 1 and we get a new node 𝑛𝑜𝑑𝑒1
7: Call FJSP-heuristic to determine whether it is feasible

8: if Feasible then
9: Not prune, add this new node to nodelist
10: else
11: Prune

12: end if
13: Let 𝒂𝑖 ← 0 and we get a new node 𝑛𝑜𝑑𝑒0 . Add 𝑛𝑜𝑑𝑒0 to the nodelist
14: for node 𝑛𝑜𝑑𝑒0 and the feasible 𝑛𝑜𝑑𝑒1 do
15: 𝑅𝑢𝑏 ← Solve program (P3)
16: Call Greedy-assign + FJSP-heuristic to get a feasible solution �̂�, and let 𝑅𝑙𝑏

be the reward of �̂�
17: if 𝑅𝑙𝑏 > 𝑣∗ then
18: 𝑣∗ ← 𝑅𝑙𝑏
19: Return �̂�
20: end if
21: if 𝑅𝑙𝑏 > 𝑅𝑢𝑏 (𝑛𝑜𝑑𝑒𝑣) for 𝑛𝑜𝑑𝑒𝑣 ∈ 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 then
22: Remove 𝑛𝑜𝑑𝑒𝑣 from nodelist
23: end if
24: if 𝑅𝑢𝑏 < 𝑅𝑙𝑏 (𝑛𝑜𝑑𝑒𝑣) for 𝑛𝑜𝑑𝑒𝑣 ∈ 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 then
25: Remove current node (𝑛𝑜𝑑𝑒0 or 𝑛𝑜𝑑𝑒1) from nodelist
26: end if
27: end for
28: end while
29: Return the leaf node 𝒂 with highest 𝑅𝑙𝑏 .

well-established methods can be effectively leveraged to ascertain

the feasibility of any provided pure strategy 𝒂.
As Algorithm 3 shows, we introduce a branch and bound-based

method to heuristically search for the optimal pure strategy 𝒂∗

with the highest reward. We incrementally fix individual entries

within 𝒂 while constructing a binary tree structure. At each node,

we compute lower and upper bounds to determine the viability

of further exploration. Our unique problem context involves an

initial assessment of feasibility using an FJSP algorithm prior to

establishing lower and upper bounds, which makes us diverge from

conventional branch and bound methods, Specifically, we employ

the 𝐹 𝐽𝑆𝑃 −ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 [34] due to its superior runtime efficiency. If a

node is feasible, we proceed to compute its lower and upper bounds;

otherwise, we prune the branch without further analysis. For the

upper bound 𝑅𝑢𝑏 of a node, we utilize the maximum objective func-

tion value derived from solving (P3) without considering ordering

constraints. We adopt a greedy approach to establish a lower bound,

progressively allocating the highest reward target while verifying

feasibility using the FJSP heuristic. The sum

∑𝑛
𝑖=1𝒚𝑖𝒂𝑖 serves as the

calculated lower bound for each node. To further accelerate the

computation, we maintain a record of maximum reward value 𝑣∗

during column generation. And we terminate the branch and bound

search and return if there is a new column 𝒂 with value 𝑣 > 𝑣∗.
Another approach to improve efficiency is incorporating a warm-

up session at the outset of the column generation process. This

session establishes an initial “favorable” column, with a higher like-

lihood of persisting within the support set of the final solution.

Each FJSP solution can be represented by a disjunctive graph 𝐺 [2]

where nodes signify operations and edges denote operation sched-

ule. The critical path within graph 𝐺 delineates the shortest time

required for completing all jobs. Applying the FJSP heuristic to

the pure strategy 𝒂 = 1, which encompasses all targets, yields an

infeasible solution graph 𝐺 with a minimal time surpassing the

budgets. By extracting the critical path from 𝐺 and progressively

de-assigning the target with the maximum operation (task) count

along this path, a new strategy 𝒂′ is derived. This iterative process,
bolstered by successive applications of FJSP-heuristic to 𝒂′, persists
until a feasible pure strategy is achieved. Subsequently, this attained

strategy is incorporated into the initial column set.

6 EVALUATION
The experiments aim to answer the three following questions:

(1) How efficient and effective is SWING in computing the de-

fender’s optimal strategy under different scenarios?

(2) How effective is approach’s design in improving the perfor-

mance of solving the composable target team defense problem

with precedence constraints?

(3) How effective is SWING in performing real-world cybersecurity

defense?

We implemented SWING as a single-thread Python program.

We use the commercial optimization software Gurobi to represent

the generic LP/MILP solver compared against SWING. All experi-

ments are run on a server with Intel(R) Xeon(R) CPU E5-2676 v3 at

2.40GHz.

6.1 Algorithm Effectiveness and Efficiency
In this experiment, we compare the performance of SWING against

two baseline approaches: (1) generic-MILP, which treats the com-

posable target team defense problem as a generic Mixed Integer

Linear Programming (MILP) problem solved by an MILP solver, and

(2) random, which randomly selects targets to cover and assigns

tasks to agents using a greedy allocation strategy.

For each comparison, we evaluate two different scenarios: one

without precedence constraints. We treat the number of targets

and the number of agents as two independent variables in the

experiment. For each scenario, we vary the value of one variable

while keeping the other constant. When the parameters are not

treated as variables, we set the number of targets to 12 and the

number of agents to 10 in no-schedule scenarios and the number

of targets to 6 and agents to 5 in with-schedule scenarios.

In each configuration, the experiment was repeated 20 times.

Utility values were randomly generated between 1 and 10 for cov-

ered (uncovered) targets for the defender (attacker) and between

-10 and -1 for the uncovered (covered) targets. All experiments are

set with a one-hour threshold. We cut out the experiment and claim

no solution if the approach is not completed within 1 hour.

Figure 3a and Figure 4a present the time cost of each approach

to solving games with varying numbers of targets for tasks without

and with precedence constraints, respectively. Our algorithm ex-

hibits significantly superior efficiency compared to generic-MILP.

Specifically, SWING is 16 times faster than generic-MILP on aver-

age. As the number of targets increases, the computational cost of

generic-MILP grows exponentially. It hits the 1-hour cutoff when

the number of targets reaches 13 for tasks without precedence con-

straints. In contrast, SWING solves all instances within an average

2 4 6 8 10 12 14
Number of targets

0

1200

2400

3600

Ti
m

e
(s

ec
)

SWING w/o s.
generic-MILP

(a) Time cost over different targets.

2 4 6 8 10
Number of agents

0

1200

2400

3600

Ti
m

e
(s

ec
)

SWING w/o s.
generic-MILP

(b) Time cost over different agents.

(10, 5) (15, 7) (20, 10)

(# targets, # agents)

6

4

2

0

2

4

6

8

De
fU

-6.71
-5.79 -6.18

4.51
3.89

2.89

4.51

7.05
7.66

random
generic-MILP
SWING w/o s.

(c) Defender utility.

Figure 3: Time cost and defender utility for the games without precedence constraints.

2 3 4 5 6 7 8
Number of targets

0

1200

2400

3600

Ti
m

e
(s

ec
)

SWING w/o s.
generic-MILP

(a) Time cost over different targets.

1 2 3 4 5 6
Number of agents

0

1200

2400

3600

Ti
m

e
(s

ec
)

SWING w/o s.
generic-MILP

(b) Time cost over different agents.

(5, 2) (10, 5) (15, 7)

(# targets, # agents)

4

2

0

2

4

6

8

De
fU

-4.9 -4.95
-4.35

6.94 6.65

8.12

random
SWING w/ s.

(c) Defender utility.

Figure 4: Time cost and defender utility for the games with precedence constraints. The baseline approaches failed to generate
any validate solutions within 1 hour.

time of 223 seconds. For tasks with precedence constraints, generic-

MILP cannot solve any of the games within 1 hour, while SWING

performs efficiently with dozens of targets and agents.

Figure 3b and Figure 4b show the time cost over different agent

numbers. Generic-MILP reached a 1-hour cutoff in the intermedi-

ary range at 5 to 7 agents, while our algorithm follows a similar

trend with an initial increase followed by a subsequent decrease.

This phenomenon aligns with intuition, as an extreme scarcity or

abundance of security resources yields either a diminutive feasi-

ble strategy or an infeasible set. In the most extreme instances,

where security resources are either insufficient to cover none of the

targets or sufficient to cover all, both algorithms exhibit prompt

termination.

We also compare the defender’s utility associated with the strate-

gies generated by the three approaches, as shown in Figure 3c and

Figure 4c. With relatively small target and agent numbers, SWING

and generic-MILP found strategies with equal defender utilities.

When the scale increases, generic-MILP is cut off under the 1-hour

threshold and ends with sub-optimal solutions. In contrast, our

algorithm consistently generates effective solutions within 1 hour.

Our algorithm demonstrates progressively enhanced solution im-

provements relative to generic-MILP as the scale amplifies.

6.2 Ablation Study for Precedence Constraints
Recall that we developed a two-pronged approach to assess the

implementability of a compact-form strategy and compute the cor-

responding normal-form mixed strategy for games with task prece-

dence constraints. In addition to the branch-and-bound algorithm,

we developed a warm-up process that identifies favorable initial

columns. In this experiment, we conduct an ablation study to eval-

uate the effectiveness of both the base design and the additional

warm-up process in solving the composable target team defense

problem.

Specifically, we compare SWINGwith a variant, SWING.warmup-

, which excludes the warm-up process, and benchmark both against

a baseline that applies the no-precedence constraint solution(use

MILP solver to solve program P4) to the precedence problem. The

experiment design is identical to that of Section 6.1, where we

enumerate the number of targets or agents while controlling other

parameters.

Figure 5a shows the exponential growth in runtime for all ap-

proaches as the number of targets increases. While our algorithm

uses branch-and-bound techniques to prune unnecessary branches

early, its worst-case complexity remains 𝑂 (2𝑛). Even so, the base-

line hits the 1-hour cutoff with the fewest targets. SWING.warmup-

reaches the 1-hour cutoff at 9 targets, whereas SWING requires less

than
1

3
of that time at the same target count.

Figure 5b presents the time cost as the number of agents varies.

All three approaches initially exhibit a rise in runtime, followed by a

decline as more security resources are allocated. With 5 or 6 agents,

the runtimes stabilize, highlighting the saturation point where

additional agents no longer significantly impact time costs. The

results also underscore the complexity introduced by precedence

constraints, as the baseline shows significant time costs even for

small games (6 targets and 3 agents).

Figure 5c demonstrates the time cost with varying budget sizes,

holding 6 targets and 5 agents constant. As budgets increase from

20 to 40, the baseline exceeds the 1-hour threshold. In contrast,

both SWING and SWING.warmup- peak at a budget of 25, with

runtimes of 33 seconds and 223 seconds, respectively. SWING is

more than 100 times faster than the baseline, emphasizing its effi-

ciency in such scenarios. In smaller-scale instances, both SWING

and SWING.warmup- terminate quickly, highlighting the perfor-

mance gains from the branch-and-bound approach.

Finally, we compare defender utilities produced by the three

approaches across different game setups, as shown in Figure 5d.

1 2 3 4 5 6 7 8 9 10 11 12
Number of targets

0

1200

2400

3600

Ti
m

e
(s

ec
)

Baseline
SWING.warmup-
SWING

(a) Time cost over targets.

1 2 3 4 5 6
Number of agents

0

1200

2400

3600

Ti
m

e
(s

ec
)

Baseline
SWING.warmup-
SWING

(b) Time cost over agents.

10 15 20 25 30 35 40 45
Budgets/agent

0

1200

2400

3600

Ti
m

e
(s

ec
)

Baseline
SWING.warmup-
SWING

(c) Time cost over agent budgets.

(5, 2) (10, 5) (15, 7)

(# targets, # agents)
6

4

2

0

2

4

6

De
fU

-5.76
-5.28 -5.26

2.66

0.78

-0.49

2.33
3.3

0.32

3.68

5.81

3.62

random
Baseline
SWING.warmup-
SWING

(d) Defender utility.

Figure 5: Time cost and computed defender utility for the baseline and two SWING variants running different game instances.
SWING.warmup-: SWING without warm-up.

SWING consistently delivers higher defender utilities than both

the baseline and SWING.warmup- across all instances.

6.3 Real-World Application: Company T

0 5 10 15 20
Agent Increase Rate (%)

0

2

4

6

8

10

Ut
ilit

y
In

cr
ea

se
 R

at
e

(%
)

Efficiency Improvement
Agent Increase

(a) Defender utility over weeks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Weeks

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Ut
ilit

y

SWING
Random

(b) Invested utility increase.

Figure 6: Defenfender utility over weeks and the increase
with different types of investiment.

We collaborated with a Fortune 500 technology company T and

applied SWING to optimize their task assignment in vulnerability

mitigation. Company T has a team of 38 employees dedicated to

vulnerability mitigation, and their mitigation process follows the

workflow illustrated in Figure 1. The company receives about 50

high-risk reports each week that require immediate resolution.

Since the total time required to analyze and mitigate all urgent

vulnerabilities exceeds the available working hours of their em-

ployees, Company T must prioritize vulnerabilities. It currently

employs a hybrid algorithm combining greedy and randomization.

The assignment algorithm is based on the weekly working hours

of each employee. It randomly selects a subset of urgent vulnerabil-

ities so that all tasks associated with them can be completed within

the week.

We applied SWING to 20 weeks of mitigation process where

every week is treated as an independent game and compared our

solution against the company’s current task assignment strategy.

Figure 6a presents the defender utility associated with SWING

versus that with the current assignment method for each week. The

results indicate that SWING consistently outperformed the existing

strategy.

We also calculated the probability that an attacker would exploit

an unmitigated vulnerability under both the current assignment

strategy and SWING. We consider sophisticated attackers, such

as Advanced Persistent Threat (APT) actors, who may have in-

sider knowledge and can optimize their attack strategy based on

the defender’s strategy, based on the consideration that high-risk

vulnerabilities are more likely to be used for APT attacks. SWING in-

creased the average detection rate of high-risk vulnerabilities from

10% to 90.91%. Given that the impact of high-risk vulnerabilities can

range from millions to billions of dollars in damages [13, 14, 27, 29],

increasing the mitigation rate for such vulnerabilities could save

the company hundreds of thousands of dollars every week. We also

used our model to guide the company in making future resource

investments. Specifically, we examined whether Company T should

invest in hiring additional personnel or improving the efficiency of

its existing workforce (e.g., through training or purchasing better

tools). To address this, we retrospectively applied SWING to the

20-week data, simulating scenarios with different numbers of em-

ployees and reduced per-task time costs. Figure 6b illustrates the

outcomes of these simulations. Our results indicate that improv-

ing efficiency contributes to more utility increases with the same

increase rate of employees.

7 CONCLUSION
In this paper, we introduced the composable target team defense

problem and presented SWING, a novel algorithm designed to effi-

ciently generate optimal feasible defender strategies with budget

constraints against adversaries. Our extensive testing demonstrates

that SWING significantly outperforms existing methods, both in

terms of efficiency and effectiveness, when applied to real-world-

scale simulated instances. We also apply SWING in a real-world sce-

nario for a Fortune 500 company. The study demonstrates SWING’s

ability to better allocate defender resources, reducing the likelihood

of an attacker successfully exploiting vulnerabilities. It also sug-

gests that SWING can guide future investments and provide the

company insights on enhancing their security posture efficiently.

ACKNOWLEDGMENTS
For her generous and valuable assistance in conducting experiments,

we give heartfelt thanks to Ati Priya Bajaj. This work is sponsored

by and related to the Department of Navy award N00014-23-1-2563

issued by the Office of Naval Research and National Science Founda-

tion under Award No. 2247954. Any opinions, findings, conclusions,

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Office of

Naval Research or the National Science Foundation.

REFERENCES
[1] Avrim Blum, Nika Haghtalab, and Ariel D Procaccia. 2014. Learning Optimal

Commitment to Overcome Insecurity. In Advances in Neural Information Process-
ing Systems, Vol. 27. Curran Associates, Inc. https://papers.nips.cc/paper/2014/

hash/cc1aa436277138f61cda703991069eaf-Abstract.html

[2] Paolo Brandimarte. 1993. Routing and scheduling in a flexible job shop by tabu

search. Annals of Operations Research 41, 3 (1993), 157–183. https://doi.org/10.

1007/BF02023073

[3] Matthew Brown, Arunesh Sinha, Aaron Schlenker, and Milind Tambe. 2016. One

size does not fit all: a game-theoretic approach for dynamically and effectively

screening for Threats. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (Phoenix, Arizona, 2016-02-12) (AAAI’16). AAAI Press, 425–431.

[4] Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom. [n.d.]. Designing

Random Allocation Mechanisms: Theory and Applications. 103, 2 ([n. d.]), 585–

623. https://doi.org/10.1257/aer.103.2.585

[5] Ronghua Chen, Bo Yang, Shi Li, and Shilong Wang. 2020. A self-learning ge-

netic algorithm based on reinforcement learning for flexible job-shop schedul-

ing problem. Computers & Industrial Engineering 149 (2020), 106778. https:

//doi.org/10.1016/j.cie.2020.106778

[6] Vincent Conitzer and Tuomas Sandholm. 2006. Computing the optimal strategy

to commit to. In Proceedings of the 7th ACM conference on Electronic commerce.
ACM, Ann Arbor Michigan USA, 82–90. https://doi.org/10.1145/1134707.1134717

[7] Fei Fang, Thanh Nguyen, Rob Pickles, Wai Lam, Gopalasamy Clements, Bo An,

Amandeep Singh, Milind Tambe, and Andrew Lemieux. 2016. Deploying PAWS:

Field Optimization of the Protection Assistant for Wildlife Security. Proceedings
of the AAAI Conference on Artificial Intelligence 30, 2 (Feb. 2016), 3966–3973.

https://doi.org/10.1609/aaai.v30i2.19070

[8] Fei Fang and Thanh H. Nguyen. 2016. Green security games: apply game theory

to addressing green security challenges. ACM SIGecom Exchanges 15, 1 (Sept.
2016), 78–83. https://doi.org/10.1145/2994501.2994507

[9] Fei Fang, Thanh Hong Nguyen, Rob Pickles, Wai Y Lam, Gopalasamy R Clements,

Bo An, Amandeep Singh, Milind Tambe, Andrew Lemieux, et al. 2016. Deploying

PAWS: Field Optimization of the Protection Assistant for Wildlife Security.. In

AAAI, Vol. 16. 3966–3973.
[10] Fei Fang, Peter Stone, and Milind Tambe. 2015. When Security Games Go Green:

Designing Defender Strategies to Prevent Poaching and Illegal Fishing. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence.

[11] Fei Fang, Peter Stone, and Milind Tambe. 2015. When security games go green:

designing defender strategies to prevent poaching and illegal fishing. In Proceed-
ings of the 24th International Conference on Artificial Intelligence (Buenos Aires,
Argentina, 2015-07-25) (IJCAI’15). AAAI Press, 2589–2595.

[12] Google. 2024. Google Bug Hunting Community. https://bughunters.google.com/

[13] IBM. 2024. IBMCost of a Data Breach Report. https://www.ibm.com/reports/data-

breach

[14] Information Week. 2024. CrowdStrike Outage Drained $5.4 Billion From Fortune

500: Report. https://www.informationweek.com/cyber-resilience/crowdstrike-

outage-drained-5-4-billion-from-fortune-500-report

[15] Debarun Kar, Fei Fang, Francesco Delle Fave, Nicole Sintov, and Milind Tambe.

2015. " A Game of Thrones" When Human Behavior Models Compete in Repeated

Stackelberg Security Games. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems. 1381–1390.

[16] Hamid Karimi, Seyed Habib A. Rahmati, and M. Zandieh. 2012. An effi-

cient knowledge-based algorithm for the flexible job shop scheduling problem.

Knowledge-Based Systems 36 (2012), 236–244. https://doi.org/10.1016/j.knosys.

2012.04.001

[17] Christopher Kiekintveed, Manish Jain, Jason Tsai, James Pita, Fernando Ordónez,

and Milind Tambe. 2009. Computing optimal randomized resource allocations

for massive security games. In Proceedings of The 8th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1. 689–696.
[18] Microsoft. 2024. Microsoft Security Response Center. https://www.microsoft.

com/en-us/msrc

[19] Offsec Co. 2023. exploitdb: The Exploit Database. https://www.exploit-db.com/.

[20] James Pita, Manish Jain, JanuszMarecki, Fernando Ordóñez, Christopher Portway,

Milind Tambe, CraigWestern, Praveen Paruchuri, and Sarit Kraus. 2008. Deployed

ARMOR protection: the application of a game theoretic model for security at

the Los Angeles International Airport. In Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems: industrial track.
125–132.

[21] James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen, and Erin Steigerwald.

2011. Guards: game theoretic security allocation on a national scale. In The 10th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1.
37–44.

[22] Anibal Sanjab, Walid Saad, and Tamer Başar. 2017. Prospect Theory for Enhanced

Cyber-Physical Security of Drone Delivery Systems: A Network Interdiction

Game. https://doi.org/10.48550/arXiv.1702.04240

[23] Aaron Schlenker, Haifeng Xu, Mina Guirguis, Christopher Kiekintveld, Arunesh

Sinha, Milind Tambe, Solomon Sonya, Darryl Balderas, and Noah Dunstatter.

2017. Don’t Bury your Head in Warnings: A Game-Theoretic Approach for

Intelligent Allocation of Cyber-security Alerts. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. 381–387.
https://doi.org/10.24963/ijcai.2017/54

[24] Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe.

2018. Stackelberg Security Games: Looking Beyond a Decade of Success. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial In-
telligence. International Joint Conferences on Artificial Intelligence Organization,

Stockholm, Sweden, 5494–5501. https://doi.org/10.24963/ijcai.2018/775

[25] Milind Tambe. 2011. Security and game theory: algorithms, deployed systems,
lessons learned. Cambridge university press.

[26] Jason Tsai, Zhengyu Yin, Jun-young Kwak, David Kempe, Christopher Kiek-

intveld, and Milind Tambe. 2010. Urban security: Game-theoretic resource allo-

cation in networked domains. In Twenty-Fourth AAAI Conference on Artificial
Intelligence.

[27] USA Federal Trade Commission. 2024. Equifax Data Breach Settlement. https:

//www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement

[28] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.

2018. Hackers vs. testers: A comparison of software vulnerability discovery

processes. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 374–391.
[29] Wired. 2022. The Untold Story of NotPetya, the Most Devastating Cyberattack

in History. https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-

code-crashed-the-world

[30] Haifeng Xu, Long Tran-Thanh, and Nicholas R. Jennings. 2016. Playing Repeated

Security Games with No Prior Knowledge. In Proceedings of the 2016 International
Conference on Autonomous Agents &Multiagent Systems (Richland, SC, 2016-05-09)
(AAMAS ’16). International Foundation for Autonomous Agents and Multiagent

Systems, 104–112.

[31] Rong Yang, Benjamin J Ford, Milind Tambe, and Andrew Lemieux. 2014. Adaptive

resource allocation for wildlife protection against illegal poachers.. In Aamas.
453–460.

[32] Rong Yang, Albert Xin Jiang, and Milind Tambe. 2013. Scaling-up Security Games

with Boundedly Rational Adversaries: A Cutting-plane Approach. In Proceedings
of the Twenty-Third international joint conference on Artificial Intelligence. 404–
410.

[33] Rong Yang, Fernando Ordonez, and Milind Tambe. 2012. Computing optimal

strategy against quantal response in security games.. In AAMAS. 847–854.
[34] Mohsen Ziaee. 2014. A heuristic algorithm for solving flexible job shop scheduling

problem. The International Journal of Advanced Manufacturing Technology 71, 1

(2014), 519–528. https://doi.org/10.1007/s00170-013-5510-z

https://papers.nips.cc/paper/2014/hash/cc1aa436277138f61cda703991069eaf-Abstract.html
https://papers.nips.cc/paper/2014/hash/cc1aa436277138f61cda703991069eaf-Abstract.html
https://doi.org/10.1007/BF02023073
https://doi.org/10.1007/BF02023073
https://doi.org/10.1257/aer.103.2.585
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1145/1134707.1134717
https://doi.org/10.1609/aaai.v30i2.19070
https://doi.org/10.1145/2994501.2994507
https://bughunters.google.com/
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://www.informationweek.com/cyber-resilience/crowdstrike-outage-drained-5-4-billion-from-fortune-500-report
https://www.informationweek.com/cyber-resilience/crowdstrike-outage-drained-5-4-billion-from-fortune-500-report
https://doi.org/10.1016/j.knosys.2012.04.001
https://doi.org/10.1016/j.knosys.2012.04.001
https://www.microsoft.com/en-us/msrc
https://www.microsoft.com/en-us/msrc
https://www.exploit-db.com/
https://doi.org/10.48550/arXiv.1702.04240
https://doi.org/10.24963/ijcai.2017/54
https://doi.org/10.24963/ijcai.2018/775
https://www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
https://www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world
https://doi.org/10.1007/s00170-013-5510-z

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Model Formulation
	4 Defender's Optimal Strategy
	5 Normal-form Strategy
	5.1 Conversion without Schedule Constraints
	5.2 Conversion with Schedule Constraints

	6 Evaluation
	6.1 Algorithm Effectiveness and Efficiency
	6.2 Ablation Study for Precedence Constraints
	6.3 Real-World Application: Company T

	7 Conclusion
	Acknowledgments
	References

